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Introduction

There has been a recent and significant change in the

way that ecologists and evolutionary biologists analyse

and draw biological inferences from their data. As an

alternative to traditional null hypothesis testing (some-

times referred to as the ‘frequentist’ approach), an

information theoretic or ‘IT’ approach examines several

competing hypotheses simultaneously to identify the best

set of models (i.e. hypotheses) via information criteria

such as Akaike’s information criterion (Burnham &

Anderson, 1998, 2002; Anderson et al., 2000). In addi-

tion, the IT approach makes inferences based on

weighted support from several models, i.e. model aver-

aging (detailed below).

The IT approach, and specifically model averaging, has

numerous advantages over traditional hypothesis testing

of a single null model where support is measured by

an arbitrary probability threshold. Instead, similar to

Bayesian approaches, several models can be ranked and

weighted to provide a quantitative measure of relative

support for each competing hypothesis. In cases where two

or more models achieve similarly high levels of support,

model averaging of this ‘top model set’ can provide a robust

means of obtaining parameter estimates (both point and

uncertainty estimates) and making predictions (Burnham

& Anderson, 2002). By comparison, more traditional

approaches such as stepwise methods, although also

resulting in a final model, completely ignore model

uncertainty (e.g. Whittingham et al., 2006). Starting with

a strong base in the field of wildlife management and

mark-recapture studies to estimate population abundance

and survival probabilities (Lebreton et al., 1992; Schwarz &

Seber, 1999), the IT approach is now being used in many

areas of ecology and evolution including landscape ecol-

ogy, behavioural ecology, life history evolution, phylog-

enetics and population genetics (Johnson & Omland,

2004; Carstens et al., 2009). Although many biologists

agree with the principles behind using this approach, the

ways and means of applying a multimodel procedure and

model averaging to various types of biological problems are

still in their infancy (see also Richards, 2005).

Meanwhile, linear mixed-effects modelling and its

extension to generalized linear mixed-effects models

(GLMMs) are now used widely in ecology and evolu-

tionary biology (Paterson & Lello, 2003; Bolker et al.,

2009). GLMMs are extremely useful as they permit the

inclusion of random effects as well as fixed effects to

complex and realistic hierarchical biological systems,
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Abstract

Information theoretic approaches and model averaging are increasing

in popularity, but this approach can be difficult to apply to the realistic,

complex models that typify many ecological and evolutionary analyses. This

is especially true for those researchers without a formal background in

information theory. Here, we highlight a number of practical obstacles to

model averaging complex models. Although not meant to be an exhaustive

review, we identify several important issues with tentative solutions where

they exist (e.g. dealing with collinearity amongst predictors; how to compute

model-averaged parameters) and highlight areas for future research where

solutions are not clear (e.g. when to use random intercepts or slopes; which

information criteria to use when random factors are involved). We also

provide a worked example of a mixed model analysis of inbreeding depression

in a wild population. By providing an overview of these issues, we hope that

this approach will become more accessible to those investigating any process

where multiple variables impact an evolutionary or ecological response.
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simultaneously dealing with non-normal response vari-

ables (such as binary and count data). The recent

popularity of GLMMs is not surprising, as they are an

overarching statistical tool that encompasses older tools

such as t-tests, ANOVAANOVA, ANCOVAANCOVA and generalized linear

models (GLMs), and indeed many of the issues we

discuss herein can be applied to other modelling

approaches. Unfortunately, the handling of the random

effects in the IT environment, especially when model

averaging is employed, is not straightforward, as the best

method of estimating Akaike Information Criterion (AIC)

(see Box 1), when random effects are included is unclear

Box 1: a summary of the alternatives to AIC

Forms of the AIC, such as AICC (small sample size correction,

Table 1) and Quasi-AIC (QAIC: controls for overdispersion),

remain the most widely used information criteria for ranking

models in the IT approach. However, there is debate sur-

rounding the utility of AIC (e.g. Spiegelhalter et al., 2002;

Stephens et al., 2007), and various alternatives have been

proposed. The different criteria in use today may be appro-

priate in different circumstances (Murtaugh, 2009), but all

information criteria are in fact approximations of Bayes

Factors (BFs) (Congdon, 2006a) with certain assumptions

such as large sample sizes. The BF is a ratio between two

models, reflecting ‘true’ model probabilities given data sup-

port, i.e. posterior model probabilities (other information

criteria approximate these posterior model probabilities)

(Jefferys, 1961 in Congdon, 2006b):

BF1;2 ¼
p yjM1ð Þ
p yjM2ð Þ ð1Þ

where p(y|Mi) is the marginal likelihood of model i. Therefore,

BFs seem to be the ideal index for model selection and

averaging. However, calculations of BFs directly become

quickly complicated when comparing more than two models.

Although several methods for using BFs for model averaging

have been suggested, it seems that currently available meth-

ods are highly technical and difficult to implement (Congdon,

2006a). Practical implementations of BFs for multimodel

comparisons are an active frontier of statistical research

(R. Barker, personal communication) and thus advances in

the area are anticipated in the near future.

In the interim, a particular alternative to AIC, the weighted

Bayesian Information Criterion (BIC) has been proposed as

superior to AIC in IT model averaging approaches (Link &

Barker, 2006), as it tends to favour more parsimonious models

[c.f. AIC which tends to favour complex models (Burnham &

Anderson, 2002; Link & Barker, 2006)] and does not require

approximation of likelihood. However, BIC still does not

accurately quantify k for random effects (Table 1), and AIC

and BIC can in fact give similar results for particular data sets

(Murtaugh, 2009). Another criterion, also in the Bayesian

context, is the Deviance Information Criterion [DIC (Spiegel-

halter et al., 2002)], which improves on BIC by the incorpo-

ration of the term kD: effective number of parameters. DIC is a

promising metric for use with mixed models; however, its

application to model averaging is not yet implemented in

widely used statistical packages nor has it been widely tested

with either simulations or empirical data. DIC is both

philosophically and mathematically more similar to AIC than

BIC (Spiegelhalter et al., 2002) in that DIC suffers similar

problems to AIC (R. Barker, personal communication,

Table 1). Conditional AIC [cAIC (Vaida & Blanchard, 2005;

Liang et al., 2008)] is another interesting prospect in that it too

can control for the number of effective parameters. However,

Vaida & Blanchard (2005) state that specification of the

number of parameters (i.e. whether to count each random

effect as 1, as per AICC, or to use the effective number of

parameters, as per cAIC) depends on the question being

investigated. Notably, cAIC is yet to be widely implemented

in statistical packages allowing its use for model averaging.

Table 1 presents the formulae for the aforementioned

information criteria, although this is by no means an

exhaustive list of information criteria. Other information

criteria found in the statistical literature include: the Focused

Information Criterion (FIC) (Claeskens & Hjort, 2003; Claes-

kens et al., 2007), Akaike’s Bayesian Information Criterion,

the Generalized Information Criterion (GIC), the Extended

(Bootstrap) Information Criterion (EIC), the Predictive Infor-

mation Criterion and Takeuchi’s Information criterion [TIC;

reviewed in Konishi & Kitagawa (2008)]. Alternatives to AIC

that still rely on maximum likelihood estimation and k are

subject to the same issues as AIC for model averaging under IT

in generalized linear mixed modelling. Overall, information

criteria can be assigned to either of two broad categories: those

suited for model selection (such as BIC) and those suited for

minimizing predictive error (such as AIC and others outlined

above) (Yang, 2005). The type of criteria chosen depends on

the question being answered (Yang, 2005), which in turn

influences how the number of degrees of freedom should

be calculated (Vaida & Blanchard, 2005; Bolker et al., 2009).

Table 1 Information criteria for model selection.

Information criterion Formula* References

Akaike Information

Criterion

AIC = )2 Æ ln L + 2k Akaike (1973)

AIC – small sample

size correction

AICC ¼ �2 � ln Lþ 2k kþ1ð Þ
n�k�1 Hurvich &

Tsai (1989)

Quasi-AIC QAIC ¼ �2�ln L
ĉ
þ 2k Lebreton et al.

(1992)

Conditional AIC cAIC = )2 Æ ln L + 2kC Vaida & Blanchard

(2005); Liang

et al. (2008)

Bayesian Information

Criterion

BIC = )2 Æ ln L + k ln (n) Schwarz (1978)

Deviance Information

Criterion

DIC = )2 Æ ln L + 2kD Spiegelhalter et al.

(2002)

*L = likelihood function = p(y|h), or, if random factors are explic-

itly separated as parameters (as in cAIC) = p(y|h,u). NB, )2 Æ ln L

is also known as the ‘deviance’. k = number of parameters in the

model; n = sample size; ĉ = overdispersion parameter; kC = effec-

tive number of degrees of freedom (cAIC); kD = effective number

of parameters (DIC). See listed references for additional details of

formula components.
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(Bolker, 2009). Additional difficulties of the IT approach

become quickly evident when compiling a biologically

meaningful model set [i.e. the difficulties of translating

biological hypotheses to statistical models (Dochtermann

& Jenkins, 2010)]. Even if one succeeds in compiling a

model set, the model averaging procedure is complicated

when interaction and polynomial terms are included

(Dochtermann & Jenkins, 2010). Furthermore, it is not

entirely clear how to proceed when a top model set for

averaging does not include a particular factor of interest.

Despite having a relatively good understanding of the

basic theory behind the IT approach, we encountered a

number of problems when applying this approach to

what initially appeared as a relatively straightforward but

fundamental analysis: modelling the effects of inbreeding

in wild populations (Grueber et al., 2010; Laws & Jamie-

son, 2010; Laws et al., 2010). It is these difficulties, and

the general lack of specific guidelines for overcoming

these in the literature at present, that led to this paper.

The aim of this paper is to highlight some of the

common practical obstacles and challenges faced when

performing mixed modelling under IT and recommend

potential solutions where they exist. Our manuscript is

intended to accompany recent papers that review par-

ticular statistical issues with the IT approach (for example

Johnson & Omland, 2004; Richards, 2005; Link & Barker,

2006; Bolker et al., 2009; Carstens et al., 2009; and a

recent ‘special issue’ of Behavioral Ecology and Sociobiology

[2011, Vol. 65, No. 1]). The current manuscript provides

methodological guidelines for practitioners in ecology

and evolution who have already decided that the IT

approach is appropriate for their data and the reader is

directed to relevant reviews for additional detail. The

issues addressed here, with their tentative solutions, are

summarized in Table 2. We further illustrate the practical

difficulties posed when using IT and model averaging

approaches, through reference to a worked example

(see Appendix), which provides clear, step-by-step

Table 2 Overview of practical issues associated with IT approaches and model averaging in evolution and ecology covered in this manuscript,

with their tentative solutions.

Practical problem Tentative solution

General challenges in the IT approach

Translating biological hypotheses into

statistical models

This is likely to remain the most difficult aspect of using an IT approach with model averaging in ecology

and evolution, because of the complexity of biological processes

Which information criterion to use when

comparing models

AICC is most widely used; where random effects are present, this problem is at present unresolved. See

also Box 1

Whether to model average If the weight of the ‘best’ model < 0.9, model averaging is recommended

Practical challenges for model averaging an ecological data set

Narrowing a list of predictors from the

measured input variables

Use ‘biologically reasonable’ variables; only transform if there is an a priori justification. Consider whether

a priori examination and ⁄ or removal of individual variables is appropriate

Presence of strongly correlated variables Depends on the nature of the correlation (see text); aim to select the variables that are most biologically

important

Generating a model set One method is to generate a global model of all biologically relevant parameters, and then generate all

possible submodels from this. However, if the global models fails to converge, it may be necessary to

reduce its complexity ⁄ size

Incompatibility of global model

parameters

Tailor the model set to include only plausible models

How to compute the model average

(natural average or zero method)

Depends on the aim of the study (see text)

How to define a top model set (what

cut-off to use)

Consider how many models (S) will be captured by a given cut-off. ‘Too many’ (based on N) is discouraged

because of the risk of spurious results, but specific recommendations for S are lacking

How to evaluate model goodness-of-fit In nonmixed models one can calculate R2; however; calculation of model fit is much more technical in

mixed models, thus presenting a practical difficulty

How to use the model for prediction The model can give ‘conditional estimates’, e.g. predictions for a factor of interest at the mean of all other

parameters

Special issues for complex models

Defining random intercepts or slopes Always fit slope if possible, otherwise use just the intercept

Nested models in the top model set It is recommended to remove models from the set that are complex versions of simpler ones, but clear

guidelines are currently lacking

Whether to force inclusion of a parameter

of interest in the model set ⁄ final model

Perform with caution if using the zero method of model averaging. Also, force inclusion of a parameter fixes

its relative importance at 1, making this metric no longer useful

How to interpret the effect sizes of

interactions and their main effects

Centring variables permits interpretation of main effects when interactions are present

How to interpret effect sizes when

predictors are on different scales

Standardization on 0.5 SD results in effect sizes that are on comparable scales

AIC, Akaike Information Criterion; IT, information theoretic.
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instructions for effective analysis and standardization of

reporting using the IT method. The worked example

focuses on modelling the fitness effects of inbreeding on a

life history trait that is also affected by several demo-

graphic variables, and in which the analysis requires

model averaging to predict survival estimates for differ-

ent levels of inbreeding (Grueber et al., 2010). By

providing a systematic overview of tentative solutions

to practical challenges faced, we hope that the IT

approach will become more accessible to those interested

in the analysis of any process where multiple variables

impact an evolutionary or ecological response.

Beyond simple model selection

One of the key philosophies that distinguishes the IT

approach from traditional null hypothesis testing is the

evaluation of relative support for a given hypothesis

over others (Burnham & Anderson, 2002), similar to

the concepts of a Bayesian framework. As such, each

model to be compared constitutes a biological hypoth-

esis, yet one of the first problems encountered when

using an IT approach to modelling ecological processes

is in translating biological hypotheses into statistical

models.

Defining appropriate input and predictor variables

The primary step is to determine which input variables

to include, and whether or how to transform these into

predictor variables (explanatory or independent vari-

ables) (see Appendix: Step 1). Note that we make a

distinction here between input variables (raw parameters

that are measured) and predictor variables (the variables

used in the model, which can also include interactions

and polynomial terms) (Gelman, 2008).

Burnham & Anderson (2002) suggest that only pre-

dictors with strong biological reasoning (based on a priori

investigation) should be included from the outset, to

prevent overparameterization. In complex ecological

systems, it is plausible that any number of factors could

have an important effect on the response variable;

therefore, one should consider the sample size rule-of-

thumb of 10 : 1 subjects to predictors in multiple regres-

sion (Harrell, 2001). In addition, there are a large

number of possible second- and higher-order interactions

and transformations (e.g. log-transformation) that may

be applied to input variables. Unless there is an a priori

biological reason for expecting such conversions to

improve the fit to the data (for example, to improve

the normality of residuals), there is little justification for

including these in the predictor set. Incidentally, regres-

sion analysis by GLMM does not require predictors (input

variables) to be normally distributed, although in some

cases, normalization transformations can reduce residual

variance and therefore affect inference regarding param-

eter estimates (Faraway, 2005).

Where there are large numbers of possible predictors,

it might seem natural to explore each variable indepen-

dently prior to generating models to identify factors

impacting strongly on the response. Doing so informally,

ideally graphically, is exactly what exploratory data

analysis is about (Tukey, 1977; Zuur et al., 2010).

However, advocates of the IT approach such as Burnham

& Anderson (2002) are in principle against exploratory

data analysis, because it results in post hoc creation of

statistical models and thus biological hypotheses. They

recommend that predictors should be selected on the

basis of genuine prior knowledge, such as from pilot

studies or the scientific literature (Burnham & Anderson,

2002).

An additional point to consider is collinearity amongst

predictors, which has received little attention despite

being a characteristic of many ecological studies (Freckl-

eton, 2010). Collinearity amongst predictors can be a

problem in model selection, as a number of models each

containing different (but correlated) predictors may

provide similar fits to the data and thus present difficul-

ties when choosing the ‘best’ model and determining

true relationships (Freckleton, 2010). Using simulations,

Freckleton (2010) demonstrated that when predictors

are correlated, IT approaches and model averaging

performed just as well or even better than ordinary least

squares methods at parameter estimation. However,

Freckleton cautioned that measurement errors in corre-

lated predictors can cause problems in any analysis.

Whether to combine collinear variables (for example into

principal components) depends on the nature of the

variables themselves and the relationships that are

expected (for examples see Freckleton, 2010). Inciden-

tally, the high prevalence of correlated predictors in

ecological data sets suggests to us the importance of

exploratory data analysis of predictors.

Random factors
The benefit of using GLMMs is that the inclusion of

random factors provides a means of dealing with

nonindependence of data (e.g. individuals that breed

from one year to the next, or breeding sites repeatedly

used by different pairs), or for hierarchical study designs

(e.g. individuals from the same social group, site, or

taxon). Schielzeth & Forstmeier (2009) suggest that both

random intercepts (to account for variation between

group means, or ‘inter-individual’ variation where indi-

viduals are sampled repeatedly) and random slopes (to

account for variation in group responses, or ‘within-

individual’ variation) should be fitted where possible [see

also Fig. 1 in van de Pol & Wright (2009)]. Using both

random intercepts and slopes reduces the incidence of

Type I and Type II errors and reduces the chance of

overconfident estimates (unrealistically low standard

error, SE) (Schielzeth & Forstmeier, 2009). However,

fitting random slopes requires relatively large sample

sizes for model convergence, especially if the data set
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contains many groups with only a few observations

(obviously, a slope cannot be fitted to only one data

point, although it is very common in ecological data to

have many individuals with only single observations).

Therefore, we recommend attempting to fit both random

intercepts and slopes unless the model does not converge,

in which case fitting a random intercept only is prefer-

able to not including the random variable at all (see

Appendix: Step 1).

Generating a set of models to compare

Once it has been established which predictors are to be

included, the next step is to generate a ‘model set’ of

hypotheses (see Appendix: Step 2). The easiest way to

generate a model set is to derive all possible submodels

from a set of predictors of interest (but not necessarily all

possible predictors, see previous section), including an

intercept-only model (which should also contain any

random factors), and then compare these (e.g. Symonds

& Johnson, 2008). This method of generating a model set

is acceptable insofar as each model is ecologically justi-

fiable (Dochtermann & Jenkins, 2010). From a practical

point-of-view, the easiest way to accomplish this in a

statistical package such as R (R Core Development Team,

2009) is to generate a global model containing all the

predictors of interest and then derive submodels from

this [see Appendix: Step 2; see also Symonds & Moussalli

(2010) for a summary of other software that perform

AIC-based analyses].

There are, however, a number of potential obstacles

to generating a model set in this way, such as what to do

if the global model does not converge (possibly because

of overparameterization in cases where sample size is

small). There are two types of nonconvergence that can

occur: the first is the failure to estimate parameters; the

second is the overestimation of SE or confidence inter-

vals, which can occur in the absence of any error

messages from software (Bolker et al., 2009). One solu-

tion to either of these forms of nonconvergence is to

follow the recommendation of Bolker et al. (2009) and

reduce the size and complexity of the global model.

Interactions can be removed first (particularly those

where the main effects are weak), and then undertaking

a priori investigation of individual factors and removing

one-by-one those main effects that either appear to have

least impact on the response, or are of least biological

interest, until the model converges. An alternative is to

generate a submodel set manually; for example, if 10

parameters are to be investigated but the global model

cannot converge, it may be desirable to generate a model

set of all submodels with a maximum of five parameters

each. However, automation would be required, as this

example would result in 638 possible models (not

including interactions or polynomials), far too many to

generate by hand. Even so, by taking this approach, one

is likely to fall victim to the ‘problem of too many models’

(Burnham & Anderson, 2002; Dochtermann & Jenkins,

2010), leading to potentially spurious results. In addition,

care should be taken to avoid generating submodels that

may be biologically implausible. For example, in cases

where predictors are mutually exclusive or otherwise

incompatible, models containing combinations of these

should not be included in the model set. Again, we

support the recommendations of Zuur et al. (2010) and

reinforce the importance of exploratory data analysis and

careful consideration of predictors.

Specific treatments or factors of interest
When there is a particular factor of interest (such as a

particular experimental treatment, or population param-

eter such as inbreeding in the worked example in

Appendix), it may seem reasonable to restrict the model

set such that it only includes models that contain this

focal parameter. However, this method should be used

with caution as models excluding the focal parameter

could possibly provide a superior fit to the data. For

example, it may turn out that a particular covariate, such

as age, explains the majority of the variation in the

response variable and that the inclusion of the focal

parameter, inbreeding, explains no additional variation;

inbreeding may in fact introduce additional uncertainty.

In the worked example, we chose not to restrict our

model set (see Appendix: Steps 2 and 3, Table S3).

Ultimately, the decision of whether to restrict a model set

to contain only models with a factor of interest depends

in part on the subsequent method used to model average,

which we describe below.

Model selection and model averaging

If the model set is large, there may be no single best

model: a number of models in the set may differ in their

data fit by only small amounts, as defined by an

information criterion. Under these circumstances, it is

best to employ an IT model averaging approach, a

procedure that accounts for model selection uncertainty

to obtain robust parameter estimates or predictions. This

procedure entails calculating a weighted average of

parameter estimates, such that parameter estimates from

models that contribute little information about the

variance in the response variable are given little weight.

Various information criteria have been presented to

determine the amount of information contained in a

given model (Table 1). At present, the most commonly

used is the Akaike Information Criterion, AIC (Akaike,

1973), and its correction for small sample size [AICC

(Hurvich & Tsai, 1989)] although AIC may be more

suitable than AICC when modelling certain nonlinear

ecological responses (Richards, 2005). Simulation studies

have shown that in certain circumstances, choosing the

‘best’ model (based on AICC for example) may provide

similar parameter estimates when compared to model

averaging. However, model-averaged results can be more
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stable than those based on choosing the best model, as

the former is less likely to erroneously conclude that

weak parameter estimates are zero (Richards, 2005;

Richards et al., 2010). It should be borne in mind,

however, that assigning the incorrect sign to a weak

parameter estimate is a possibility in any regression

(Gelman & Tuerlinckx, 2000), and further research as to

the effects of model averaging on this type of error would

be useful.

An important issue with the broad application of

AICC to GLMMs is in the calculation of the number

of parameters (k) when random factors are included

(Spiegelhalter et al., 2002; see also Box 1). Tentative

solutions are provided in the development of alternative

information criteria for use in IT model averaging,

especially under a Bayesian framework (Box 1). Addi-

tionally, in GLMM analysis, the residual variance of non-

Gaussian data may be modelled as either multiplicative

overdispersion (the overdispersion parameter which

appears in QAIC, see Table 1) or additive overdispersion

(a residual variance as in linear mixed models; see

Browne et al., 2005). These different implementations

can obviously influence information criterion calcula-

tions (Nakagawa & Schielzeth, 2010). Although both

methods of modelling overdispersion are suited for fitting

GLMMs, different software packages may use either

approach, affecting how the variance components (i.e.

random effects) should be treated and interpreted

(Nakagawa & Schielzeth, 2010). Overall, when focussing

on linear regression-type analysis, AICC remains the most

widely used criterion; it is also the most easily applied

because it is implemented in model averaging packages

in R [such as MuMIn (Bartoń, 2009)] and most other

major statistical packages (Symonds & Moussalli, 2010).

Once it has been identified that model averaging is

necessary, the next step is to determine which models to

average (see Appendix: Step 3). This can be influenced by

the question being asked: for example, broad questions,

such as whether inbreeding affects fitness, will require a

larger model set than more specific questions, such as

whether one island exhibits greater fledging success than

another island. Under an IT framework, it is assumed that

the ‘true’ model is in the model set (Burnham &

Anderson, 2002), but averaging the full model set, or a

large proportion of it, is not recommended not only

because parameter estimates from models with very poor

weights are likely to be spurious (Anderson & Burnham,

2002) but also because the full model set may include

redundant models (such as biologically meaningless

models or nested models). Indeed, where S (the number

of models in the set) is very high relative to N (the sample

size), excessive model uncertainty (and thus high error

associated with parameter estimation) can be expected

and even the best model will have a very small Akaike

weight (Burnham & Anderson, 2002). On the other

hand, limiting the model set too stringently may result

in exclusion of the ‘best’ model. There are a number of

recommendations for the cut-off criterion to use to

delineate a ‘top model set’, such as using the top 2AICC

of models (Burnham & Anderson, 2002), top 6AICC

(Richards, 2008), top 10AICC (Bolker et al., 2009) or 95%

confidence (summed weight, Burnham & Anderson,

2002).

An added complication is how to decide what to do if a

particular factor of interest (such as an experimental

treatment) is not present in a model captured within the

top model set (see Appendix: Step 4). Solutions in such

cases are to either conclude that there is little evidence

that the factor of interest explains variation in the

response variable or extend the cut-off criteria to include

at least one model that contains the factor of interest (for

example, in cases where a parameter estimate is essential

to further analysis). The latter solution may result in very

large model sets, and ⁄ or inconsistent cut-off criteria for

different response variables. High cut-offs are discour-

aged as they can lead not only to spurious results as

described earlier but also to the inclusion of overly

complex models (Richards, 2008). Such overly complex

models may have similar weight as simpler versions in

the set, and model averaging these can potentially result

in overweighting the parameters they contain. Simula-

tion studies have shown that removing complex models

from the set does not necessarily impact the chance of

selecting parsimonious models and also reduces the total

number of models selected (Richards et al., 2010). A

tentative solution therefore is to exclude models from the

set that are more complex versions of those with lower

AICC (Burnham & Anderson, 2002; Richards, 2008).

However, careful scrutiny of these complex models may

reveal that they are characterized by the presence of

unique predictors of potentially strong biological impor-

tance and therefore in such cases should not be removed.

Determining how to resolve the issue of nested models is

likely to depend on the context of the particular study,

but there are currently few clear guidelines on this.

After a top model set is defined, the method used to

compute the model-averaged parameters should also be

chosen carefully. There are two methods by which the

estimate and error for each parameter are weighted

(detailed in Burnham & Anderson, 2002; Nakagawa &

Freckleton, 2010). In the so-called natural average

method (Burnham & Anderson, 2002; p. 152), the

parameter estimate for each predictor is averaged only

over models in which that predictor appears and is

weighted by the summed weights of these models.

Alternatively, in the so-called zero method (Burnham

& Anderson, 2002), a parameter estimate (and error) of

zero is substituted into those models where the given

parameter is absent, and the parameter estimate is

obtained by averaging over all models in the top model

set. Thus, the zero method decreases the effect sizes (and

errors) of predictors that only appear in models with

small model weights (particularly when the predictors

have weak effects), diluting the parameter estimates of
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these predictors (shrinkage towards zero) (Lukacs et al.,

2010).

Although no clear distinction has been made as to the

circumstances under which either of these two methods

is more appropriate, Nakagawa & Freckleton (2010)

recommend that the zero method should be used when

the aim of the study is to determine which factors have

the strongest effect on the response variable. Conversely,

when there is a particular factor of interest and it is

possible that this factor may have a weak effect compared

to other covariates, the natural average method should

be used to avoid shrinkage towards zero (see Appendix:

Step 3). Under the natural average method, the choice of

whether to include a parameter of interest is inconse-

quential, as this method only averages parameters over

models in which they appear anyway. Thus, the presence

of additional models in the set, that do not include the

parameter of interest, will have no influence on the

calculation of the effect size or SE of the focal parameter.

However, restricting the top model set to only those

models that contain a parameter of interest will fix the

relative importance of this parameter at 1, making this

metric no longer useful (see Appendix: Table S3).

Determining whether the final model provides a good

fit to the data presents technical challenges when

random factors are present. In the case on nonmixed

models, R2 can be calculated (Burnham & Anderson,

2002), but this is difficult in mixed models (Gelman &

Hill, 2007). Further implementation of these methods is

required in widely used statistical software such as R.

Interpretation of model estimates

When model-averaged estimates are derived, it is essen-

tial to interpret both the direction (positive or negative)

of parameter estimates and their magnitudes (effect sizes)

in relation to one another (see Appendix: Step 4). Such

an assessment can be problematic when input variables

are measured on different scales (Gelman, 2008), and

interactions are present. Interactions prevent the inter-

pretation of main effects (van de Pol & Wright, 2009),

because resultant estimates are usually not comparable to

each other. These problems are common with any

multiple regression analysis and are not unique to the

IT approach per se. The process of model averaging can

complicate these problems further as it combines param-

eter estimates derived from models both with and

without interaction and polynomial terms (note that

the model-averaged intercepts are usually not interpret-

able). Fortunately, these problems are largely solved by

centralizing predictors (see Appendix: Steps 2 and 4), and

there is generally a strong justification for doing so,

especially where interactions and polynomials are pres-

ent (Gelman, 2008; Schielzeth, 2010). Centralizing pre-

dictors is essential when model averaging is employed,

and standardization facilitates the interpretation of the

relative strength of parameter estimates.

In linear regression, the interpretation of main effects

is impaired when (significant) interactions are present,

but this issue is largely resolved if input variables are

centred, and inferences are made at points within the

biologically meaningful range of the parameter, such as

the mean (detailed in Schielzeth, 2010). In addition, it is

recommended that input variables (not predictors) are

standardized to a mean of 0 and a SD of 0.5 before model

analysis (see Appendix: Step 2). The value 0.5 is used,

rather than 1 SD, as this allows the standardization of

binary predictors [and ⁄ or categorical variables, as ‘dum-

my variables’ are created (Schielzeth, 2010)] and con-

tinuous predictor variables to a common scale (Gelman,

2008; see also Hereford et al. (2004) for a discussion of

standardization in the context of quantitative genetics).

When interpreting the model, it is therefore important

to remember that parameter estimates are on this scale.

Such standardizations have sometimes been criticized

(King, 1986; Bring, 1994; Hereford et al., 2004;

Schielzeth, 2010) because parameter estimates are on

the transformed scales, which are difficult to interpret

biologically. However, back-transformations (described

below) of these estimates are straightforward and

we recommend that where point estimates of the

response variable are derived, authors present them in

the original scale (see Appendix: Step 5).

Using the model for prediction
In many cases, the final model is ultimately used to

generate a point estimate for the response variable under

a given set of circumstances (i.e at fixed points for each

predictor variable). In studies of inbreeding, for example,

we are interested in comparing the predicted survival

point estimates of highly inbred vs. outbred individuals

(e.g. Keller & Waller, 2002). There are nearly unlimited

combinations of predictor levels (‘conditions’) that could

conceivably be substituted into the model statement to

evaluate survival estimates, and the choice of levels made

will depend on the question being investigated. For

example, one may choose to use a ‘worst-case-scenario’

(by substituting in extreme values for the predictors) to

compare the responses at one site to those of another,

to compare conservation management strategies or any

others. When predictors have been centred and stan-

dardized following the approach of Gelman (2008), one

can substitute 0 as the mean and xi � �xð Þ= 2 � rxð Þ for

different levels (xi) of a parameter of interest (with a

mean �x and standard deviation rx) (see Appendix: Step

5). It is essential to remember to back-transform the

result. Effects of a parameter of interest should be

computed at the mean of all other parameters as a

matter of routine, to allow comparisons across studies.

Conclusion

The issues presented here are not intended as an

exhaustive survey of the practical difficulties associated
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with the application of model averaging under an IT

framework. For example, this paper has not explored the

problems presented by missing data. Model comparisons

using IT approaches require data sets with no missing

data, as deleting cases containing missing values can

severely affect the results of model selection under IT

approaches (Nakagawa & Freckleton, 2010). This has

been recently covered in detail by other authors

(Nakagawa & Freckleton, 2010). Nonetheless, in the

current discussion, we have identified a number of areas

for more research:

• Which IT criteria should be used when comparing

models, given the difficulties presented by including

random factors?

• In determining the cut-off for a top model set when

examining a factor of interest – how many models is

‘too many’ for model averaging?

• How should we decide which nested models to remove

from the model set?

• How do we quantify model fit in mixed-effects mod-

els?

In addition, we emphasize the importance of stan-

dardizing variables where model averaging is employed,

as to fail to do so renders the results of model averaging

uninterpretable in the presence of interactions (c.f.

Schielzeth, 2010).

Whereas the debate continues amongst the statisti-

cians in this general area – amongst Frequentists,

Information Theoreticians and Bayesians (e.g. Stephens

et al., 2005, 2007; Lukacs et al., 2007; McCarthy, 2007) –

ecologists and evolutionary biologists continue to derive

interesting and important hypotheses, collect data to test

their hypotheses, and analyse and (hopefully) publish

their results. Resolution of some of the pertinent issues

noted above may still be a considerable time away and

future work on these problems using simulated data,

particularly exploring the use of AIC-based metrics

(Box 1), will be a promising area of research. In the

meantime, practitioners require pathways and signposts

to tentatively guide them through what could be

considered the analytical and statistical fog of the new

era of information theory and model averaging. Until

that fog lifts, it is hoped that the guidelines provided here

can improve the consistency and standard of reporting of

results in ecological and evolutionary studies using IT

approaches.
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Appendix: Worked example for performing
model averaging under GLMM in R

This paper explores issues associated with model selec-

tion under an IT framework using GLMMs, and we

provide here a worked example modelling the effect of

inbreeding in an endangered species. Although the

worked example focuses on inbreeding depression, the

guidelines we present are sufficiently general that they

could be applied to any area of study where model

averaging is employed. With the advent of molecular

markers, and the increasing interest in the conservation

and management of small populations, the study of

inbreeding has had renewed focus as one of the oldest

topics in evolutionary biology (Darwin, 1876; Wright,

1922; Haldane, 1924; Fisher, 1948). The deleterious

consequences of matings amongst relatives (inbreeding

depression) are normally measured using lethal equiva-

lents, where 1 lethal equivalent is defined as the number

of deleterious genes per haploid genome whose cumu-

lative effect is equivalent of 1 lethal gene (Keller &

Waller, 2002). We demonstrate how to use the final

model for prediction by calculating lethal equivalents

(see below). Finally, we chose to perform our analysis

using R (R Core Development Team, 2009), as this

software is freely available and widely used. Symonds &

Moussalli (2010) present a summary of other software

packages that permit AIC-based analysis.

Background to the data set

The data were collected over several seasons and

consisted of marked individuals, some of which were

sampled multiple times. The analysis required model

averaging to predict survival estimates for different

levels of inbreeding. This example is a real-life conser-

vation problem associated with small island populations

of a flightless and highly endangered bird, the takahe

(Porphyrio hochstetteri) (for further background to the

study of inbreeding in this population see Jamieson

et al., 2003; Grueber & Jamieson, 2008; Grueber et al.,

2010). Here, the response variable is the probability that

a hatched takahe egg will successfully fledge. The data

set used for this analysis is provided in the Supporting

Information (Table S1) and includes 217 observations of

hatching (= the number of binomial trials) and fledging

(= the number of binomial successes) from 64 individ-

uals (see also Jamieson et al., 2003; Grueber et al.,

2010).

Step 1: defining model parameters

The data set used here includes four input variables: (i)

age (a continuous variable), (ii) inbreeding coefficient

(f, coded as ‘F’ in the analysis, a continuous variable), (iii)

time period since population founding (‘YearID’: early,

mid or late, an ordinal variable) and (iv) island site (a

categorical variable with four levels). We controlled for

breeding with multiple partners by also including a

random factor for individual identity (IndID). Because

this random factor has many levels (there are 64

individuals in the data set), but each level has only a

few data points, we could not model random slopes.

Random intercepts are denoted in the models below as

(1|IndID).
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In the manuscript (section ‘Defining appropriate input

and predictor variables’), we discuss the importance of

including all interesting predictor variables including

plausible (i.e. interpretable) interactions ⁄ polynomials in

the analysis. Thus in our example the global model

includes Age2, as previous studies have revealed this

relationship in bird populations (Forslund & Pärt, 1995),

and we include the interaction f · Age based on other

studies that observed this relationship (e.g. Keller et al.,

2008). As the response (fledge or not) was coded in the

data as a two-column matrix of [Hatch, Fledge], it was

recoded in R as the number of [successes, failures] using

the function cbind:

PrFledge <� cbindðFledge;Hatch� FledgeÞ:

Step 2: generating a model set

To generate a model set in the working example, we first

fit a global GLMM using the lmer function implemented

in the lme4 package (Bates & Maechler, 2009). In R, this

is defined as:

global.model <� ImerðPrFledge � IðAge2Þ þ Age

þ factor(Island)þ YearIDþ F + F : Age

þ ð1 IndIDÞ; data = data, family ¼ 00binomial00Þj

Once the global model is defined one can standardize

the input variables using Gelman’s (2008) approach, as

this will be essential for interpreting the parameter

estimates after model averaging (we detail this

approach in the section ‘Interpretation of model esti-

mates’ of the main manuscript). The standardize

function is available within the arm package (Gelman

et al., 2009):

stdz:model <� standardizeðglobal:model;

standardize.y = FALSE)

The function summary(stdz.model) can be used to

generate a summary of the standardized global model

(see Fig. S1), including information criteria (AIC, BIC,

raw log likelihood and deviance), as well as details

about the random factor. Parameter estimates are also

provided, along with their SE and ‘z-scores’ (actu-

ally these are modified ‘half z-scores’ because the

standardization uses 2SD). We remind the reader that

although a model may be fitted to the data (without

producing an error message), extreme SE values are

indicative of a poorly converging model (Bolker et al.,

2009).

The next step in generating a full submodel set

(including the null model) from the global model is to

use the dredge function implemented in the MuMIn

package (Bartoń, 2009):

model:set <� dredgeðstdz:modelÞ

In the example, this resulted in a total model set (S) of

40 models (Table S2). We chose not to restrict the model

set to only those models containing inbreeding. How-

ever, results obtained when the model set was restricted

are provided in Supplementary Material (Table S3, see

also below).

Step 3: model averaging

In the working example, we obtained the top 2AICC of

models using the function get.models implemented in

the MuMIn package:

top:models <� get:modelsðmodel:set; subset ¼ delta<2Þ

which results in a set of six models. Using a cut-off of

4AICC yields 21 models. Alternatively, one could obtain a

95% confidence model set:

top:models <� get:modelsðmodel:set; cumsumðweightÞ
� 0:95Þ

which totalled 31 of the 40 possible models. Because of

the high number of models in the latter two approaches,

we proceed with the 2AICC cut-off, although for this

particular data set, similar effect sizes are reached when

using different AICC cut-offs (Table S3). This top model

set is then averaged using the NA (natural average:

nonshrinkage) method rather than the zero method as

this example is focussed on the particular effect of

inbreeding, and it is possible that this factor may have a

weak effect compared to other covariates:

model:avgðtop:models;method ¼ 00NA00Þ

For this particular data set, it was observed that the

alternative methods of averaging do result in different

effect sizes for the parameter of interest (Table S3) and that

this should therefore be made carefully (see section ‘Model

selection and model averaging’ of the main manuscript).

Step 4: interpreting model-averaged results

The six models that were included in the ‘top model’ set

are provided in the ‘Model summary’ of the R output for

the model.avg function in the MuMIn package (Fig. S2).

The model.avg function recalculates the model weights

based on the new submodel set of top models. Age2 is not

present in the final model because it was not in the top

model set. We interpreted this result as indicating that

Age2 is not a useful predictor of fledging success in

takahe. The results of the model averaging are summa-

rized in Table A1; remember that the parameter estimates

are standardized effect sizes and are therefore on a

comparable scale.
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Table A1 Summary results of the working example

after model averaging: effects of each parameter on

fledging success in takahe (Porphyrio hochstetteri).

Parameter Estimate*

Unconditional

SE

Confidence

interval

Relative

importance

(Intercept) 0.146 0.265 ()0.374, 0.666)

Island2� )0.745 0.310 ()1.35, )0.138) 0.25

Island3 )0.572 0.371 ()1.30, 0.154) ’’

Island4 )0.448 0.642 ()1.71, 0.811) ’’

Age 0.500 0.287 ()0.063, 1.06) 1.00

f )0.538 0.314 ()1.15, 0.079) 0.71

YearID )0.117 0.290 ()0.686, 0.451) 0.10

Age · f )1.190 0.732 ()2.63, 0.243) 0.38

*Effect sizes have been standardized on two SD following Gelman

(2008).
�Island1 was the reference category.

It is most useful to report unconditional SE because it

incorporates model selection uncertainty (Table S1), as

opposed to standard SE which only considers sampling

variance. If extreme SE or confidence intervals occur, this

is indicative of at least one of the models in the set failing

to converge (Bolker et al., 2009). In the worked example,

Age was the most important predictor with f (inbreeding

coefficient) having 71% relative importance to Age. All

confidence intervals for the parameter estimates include

zero, so there is little evidence in this example that any of

the predictor variables affect fledging success (Table S1).

However, it could still be relevant to use the model to

predict point estimates of survival for certain conditions

(see below).

Step 5: using the model for prediction

Here we demonstrate using the model for prediction by

calculating lethal equivalents. Given that the log of

overall fitness is expected to decline linearly with

increases in the inbreeding coefficient f, the slope of this

relationship ()B) is used as a standardized measure of

inbreeding depression (Keller & Waller, 2002). This

estimate was first calculated by Morton et al. (1956)

using linear regression and eqn A1:

B ¼ �lnðSf =S0Þ=f ðA1Þ

where Sf is the probability of survival at inbreeding level f

(by convention 0.25, first-order relatives) and S0 is

the probability of survival at f = 0, with 2B equal to the

number of lethal equivalents per diploid organism. The

finalGLMMwehavederived intheworkedexampleallows

us to calculate lethal equivalents including environmental

and demographic factors, as well as the random factor.

Using the parameter estimates from the final model

(Table S1), we calculate lethal equivalents by deriving

point estimates to compare fledging probability when

f = 0 (the breeder is not inbred) and f = 0.25 (the parents

of the breeder were first-degree relatives). To make such

point estimates from a complex model, one must specify

fixed levels for each of the covariates in the final

averaged model. In the current example, we make

estimates at the population mean for all other parameters

that were found to be important in the final model (i.e.

Island, Age and Year ID), as this is likely to provide the

most useful comparison to other, similar studies.

Bearing in mind that the predictors have been stan-

dardized to a mean of 0 and SD of 0.5 (Gelman, 2008), it

is important to solve the model by substituting standar-

dised predictors, i.e. 0 for the mean, or xi � �xð Þ= 2 � rxð Þ for

other values (i). In this data set, the mean of f = 0.0316

and the SD = 0.0600, calculated from the input file.

Thus, we solve the model for both f = 0 and 0.25, at the

mean of all other parameters (using a weighted mean

for the categorical factor of island). For example, the

predicted survival when f = 0 on island 1, is (using the

figures in Table A1):

pðFledgeIsland1Þ ¼ 0:146� 0:745 � 0� 0:572 � 0� 0:448 �
0þ 0:500 � 0� 0:538 � ð½0� 0:0316�=
½2 � 0:0600�Þ � 0:117 � 0� 1:190 � 0 � 0

¼ 0:288

The weighted average of survival estimates across all

islands is:

pðFledgeÞ ¼ ð0:288 � NIsland1 � 0:457 � NIsland2

þ�0:284 � NIsland3 � 0:160 � NIsland4Þ=Ntotal

¼ ð0:288 � 11� 0:458 � 22� 0:284 � 21

� 0:160 � 10Þ=64

¼ �0:226

When f = 0.25 survival estimates are also calculated for

each island in turn using the method above, and the

weighted average across islands is )1.347.

As this example models a binomial response variable

(fitted with a logit link), these point estimates are the

probability of success on a logit scale. We back-transform

using:

p ¼ 1=ð1þ 1=e
xÞ ðA2Þ

where x is the probability of survival on the logit scale.

The invlogit function (available in the package arm

[Gelman et al., 2009]) can perform this calculation in R.

Thus, the probability that a fledged egg will hatch (the

‘conditional survival’) when the parental f = 0 and at the

mean of all other parameters is 0.444. The probability

when the parental f = 0.25 (equivalent to sib–sib mating)

is 0.206, only 46% of the fledging success of outbred

individuals. In studies of inbreeding, these values are

normally substituted into eqn 1 to calculate lethal

equivalents, and in this example, 2B = 6.1. In addition

to any other inferences made from a final model, we

propose that point estimates should always be calculated

using means for covariates and weighted means for

factors, to permit comparisons across study populations.
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Uncertainty of these point estimates can also be

established, as the model.avg function in R outputs the

lower and upper bounds of the confidence intervals for

each parameter estimate (see Supplementary Material

Fig. S2). These values can be substituted into a model

formula as ‘parameter estimates’ to generate predicted

survival estimates at both the lower and upper bounds

of the 95% confidence interval. Following our worked

example, where f = 0, we generate the lower bound of

the 95% confidence interval for fledging probability on

Island 1 thus (using the figures in Table A1):

Lower 95% CIðFledgeIsland1Þ ¼ �0:374� 1:350 � 0

� 1:300 � 0� 1:710 � 0þ 0:063 � 0

� 1:150 � ð½0� 0:0316�=½2 � 0:0600�Þ
� 0:686 � 0� 2:63 � 0 � ð½0� 0:0316�=½2 � 0:0600�Þ
¼ �0:071

Each island must be computed separately, and then a

weighted average obtained:

ð�0:071 � NIsland1�1:421 � NIsland2�1:371 � NIsland3

�1:781 � NIsland4Þ=Ntotal

¼ ð�0:071 � 11� 1:421 � 22� 1:371 � 21

� 1:781 � 10Þ=64

¼ �1:229

Again, this will need to be back-transformed (inverse

logited), to give 0.226: the lower bound of the 95%

confidence interval for the predicted probability of

fledging when f = 0. The upper bound can be computed

similarly, and the confidence intervals in this example

are asymmetrical, because the response is binomial and

as such bound between 0 and 1.

Finishing our calculation of lethal equivalents, the

upper and lower 95% confidence bounds of survival

probability for f = 0 and f = 0.25 can be substituted into

eqn 1 to generate upper and lower bounds for the 95%

confidence interval of lethal equivalents:

Lower bound 95% CI: B ¼ �lnð0:026=0:226Þ=0:25

¼ 8:66

Upper bound 95% CI: B ¼ �lnð0:719=0:685Þ=0:25

¼ �0:196

Note that the ‘lower bound’ produces a positive value,

and the ‘upper bound’ produces a negative value. This is

because of the sign change in eqn 1 so the lower bound

should be interpreted as ‘maximal inbreeding depression’

and the upper bound as ‘minimal inbreeding depression’.

Here, the confidence interval for lethal equivalents

includes zero, consistent with the observation that the

confidence interval for the parameter estimate included

zero (Table S1). It should be noted that these methods

provide only approximated confidence intervals and that

more work is needed to improve these approximation

methods.
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